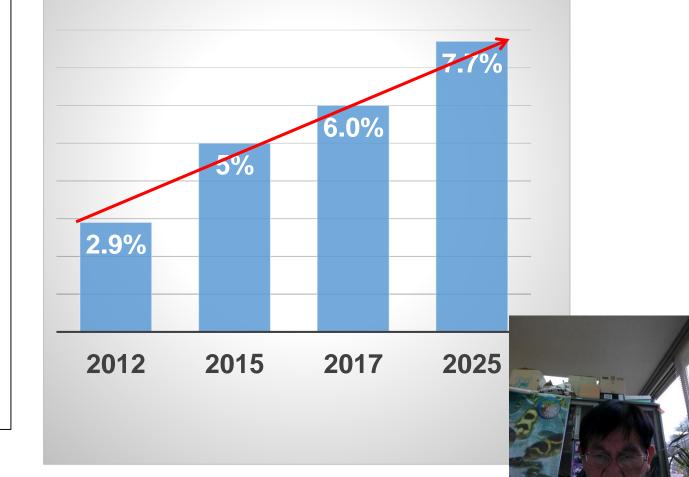
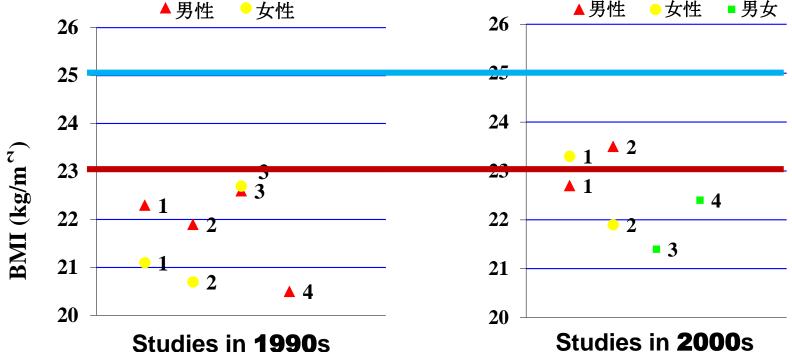
Acceptability of Dishes with Soy-Based Meat Substitute and Their Effects on Blood Biochemistry in Vietnamese T2DM Patients

Shigeru Yamamoto, Professor, Ph.D., RD International Nutrition, Department of Food and Nutritional Sciences


Graduate School of Human Life Sciences, Jumonji University,

Top 10 causes of death in Vietnam-2018


- **1. Stroke (No. 1 cerebral infarction)**
- 2. Ischemic heart disease
- 3. Lung cancer
- 4. chronic obstructive pulmonary disease
- 5. Alzhemerer's
- 6. Diabetes
- 7. Cirrhosis
- 8. Injuries
- 9. Lower respiratory injections
- **10. Tuberculosis**

Prevelance of Diabetes in Vietnam ベトナムにおける糖尿病の有病率

BMI of Vietnamese Type 2 DM is rather normal

I think that the major cause is low fiber intake (<10g/day in adults)

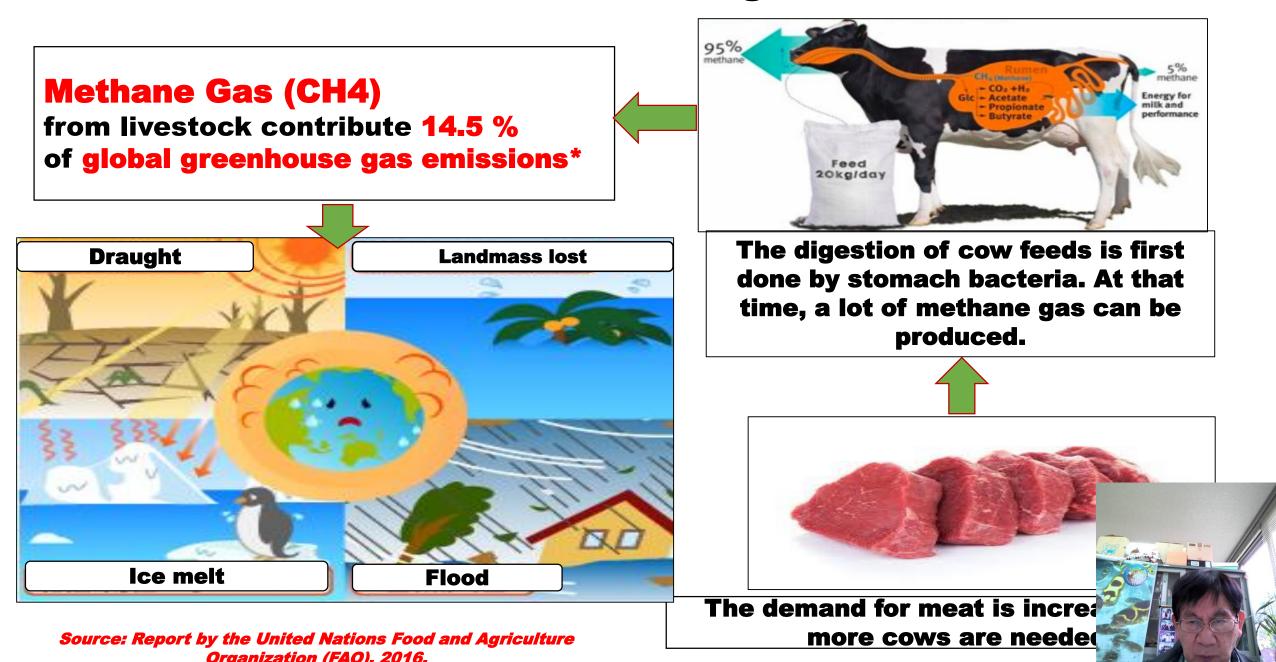
- 1. Study in 241 patients in inpatients unit of NTP hospital (Quynh et al)
- 2. Study in 629 patients in inpatients unit of NDGD (Thuy et al)
- 3. Study in 504 BN **ĐTĐ** (Dat et al)
- 4. Study in subjects with insulin resistance (Minh et al)

- 1. Epidemiological study on diabetes in 2932 subjects in Ho Chi Minh City (Son et al, 2004)
- 2. A cross-sectional study in 48 newly diagnose patients and 96 normal subjects (matched by a locality) (Son et al 2004)
- 3. Epidemiological study on diabetes in three Hanoi city with 2017 subjects (Hai et al, 2001)
- 4. Epidemiological study on diabetes in 3286 sub Giang province (Tuan et al, 2003)

• In the United States, soybean meat made from plants is often used for meat patties sandwiched between hamburgers.

• The trend is coming to Japan, and since 2020, the commercialization of hamburgers using substitute meat is progressing.

• Moreover, its taste is not so different from the original meat, and it seems to have the advantage of having less calories and higher nutritional value than meat.



Meat Free Monday (2009) started by a member of Beatles Paul Mc Cartiney

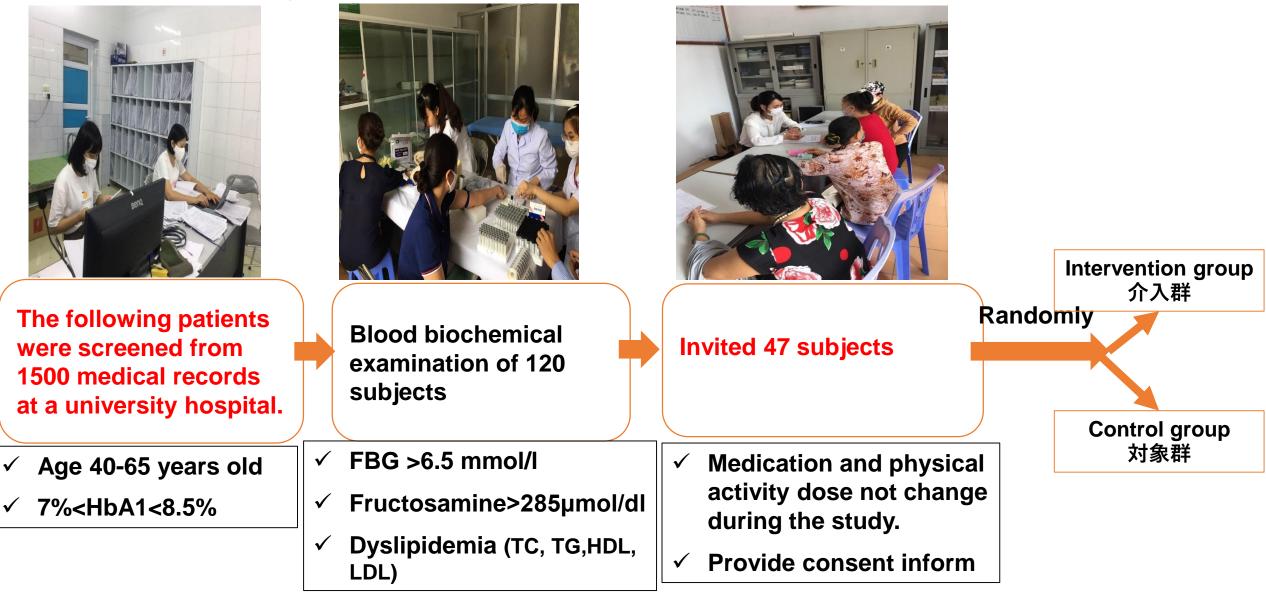
How we can make a positive difference in slowing climate change, preserve natural resources, and better our health by having at least one plant-based day a week.

We can save earth eating less meat

Textured Soybean Protein (Soy-based meat substitute) (Soy meat)

- Through the process of compressing at high pressure and temperature by Extruder, a porous texture which rich in fiber (13.6g/100g) is formed.
- High firber concentration in soy meat is expected to be a diet treatment for diabetic patients.

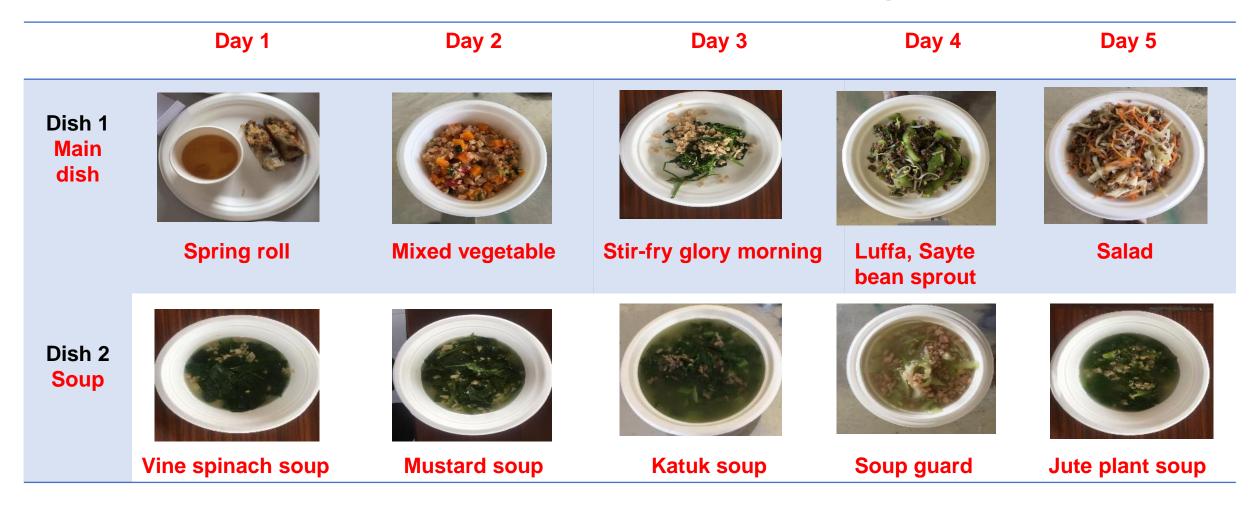
フーックF



Effects of Soy Meat on improving blood glucose, lipid profile in type 2 diabetics

Subjects

The study was approved by the ethical committee of Hai Duong Medical Technical University- a surburb of Hanoi City.


Creating delicious soy meat dishes

Name of dishes	Spring roll	Korokke	Steam egg	Cabbage roll	Mixed vegetable	stir-fried morning glory	Luffa, Sayte bean sprout	Fried egg
Name of dishes	Guard soup	Tomato sauce	Katuk soup	Mustard soup	Potatos soup	Vine spinach soup	Smash porridge	Salad cucumber

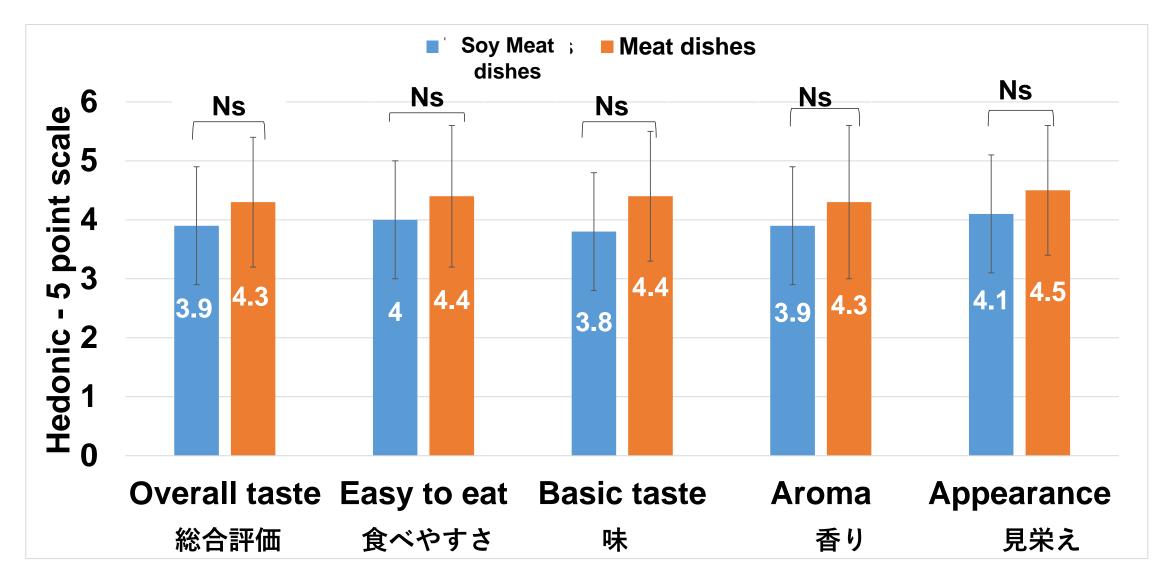
We have created a soy meat dish that is as delicious as real meat and does not smell like soybeans.

5 Day Cycle Menus

The best 10 dishs for intervention trials in T2DM patients

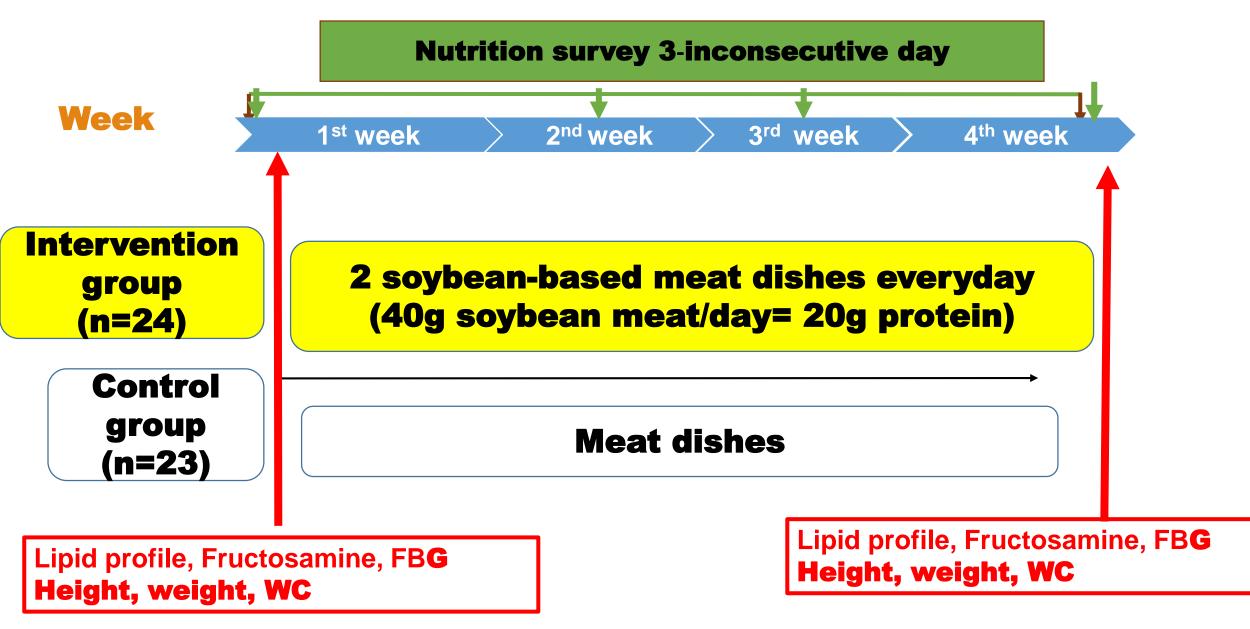
The amount of 40g Soybean- Meat (contains 6g fiber) was used.

Sensory Test



Cooking

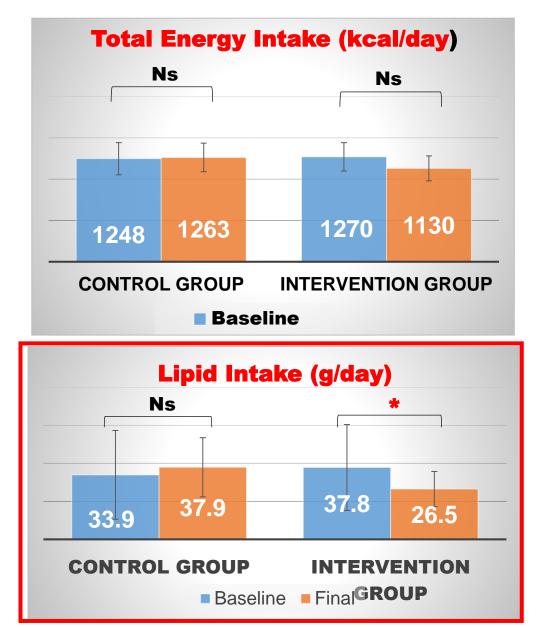
- 10 dishes using Meat for the control group.
- 10 dishes using Soy Meat (the same receipts) for the intervention group.


Sensory test 官能検査 Interview and ask for score of each dishes by Hedonic-5 point scale

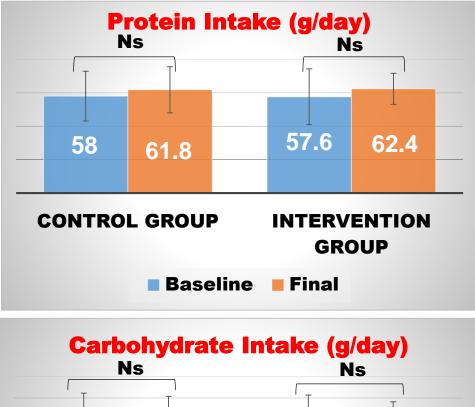
Results of Sensory Test

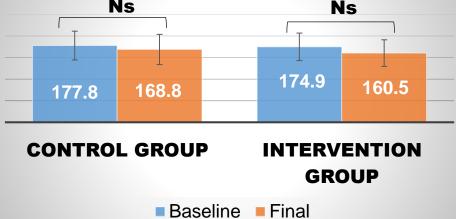
Significant diffirent at p < 0.05 by Paired student *t*-test

Study design

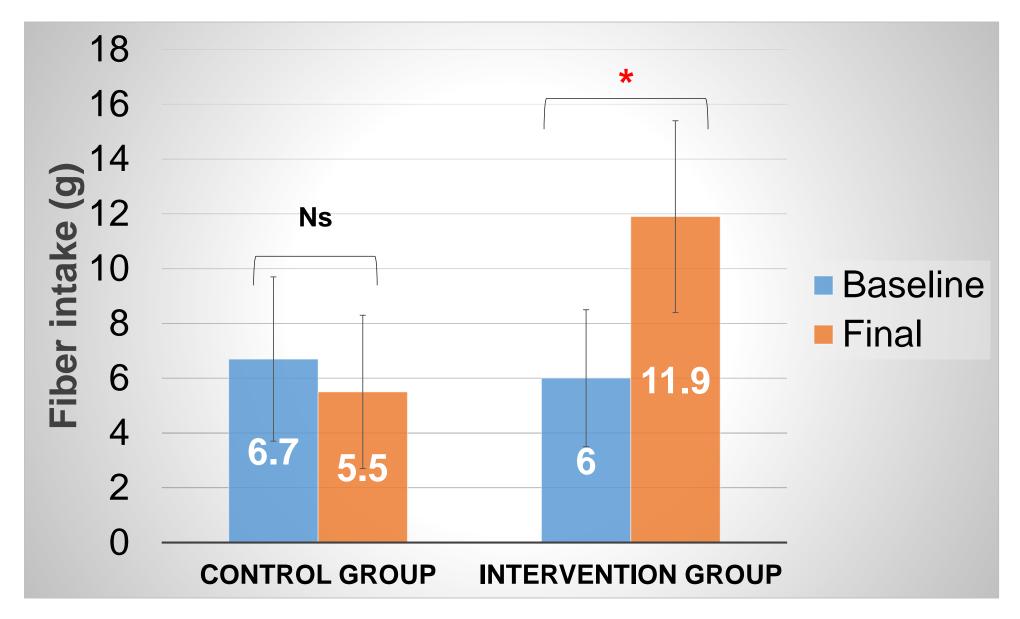


Anthropometric indices at baseline and final


Variables	A	ontrol group ge 59.1±7.5 23 (14, M 9)	Intervention group Age 59.1±7.5 N=23 (15, M 9)			
	Baseline	Final	P	Baseline	Final	P
Weight (kg)	59.3±10.1	58.9±10.1	0.06	59.9±8.9	59.3±8.9	0.15
BMI (kg/m2)	23.6±2.7	23.4±2.9	0.5	24.3±2.9	24.0±3.1	0.23


Significant diffirent at p < 0.05 by Paired student *t*-test

Energy and nutrient intakes at baseline and final



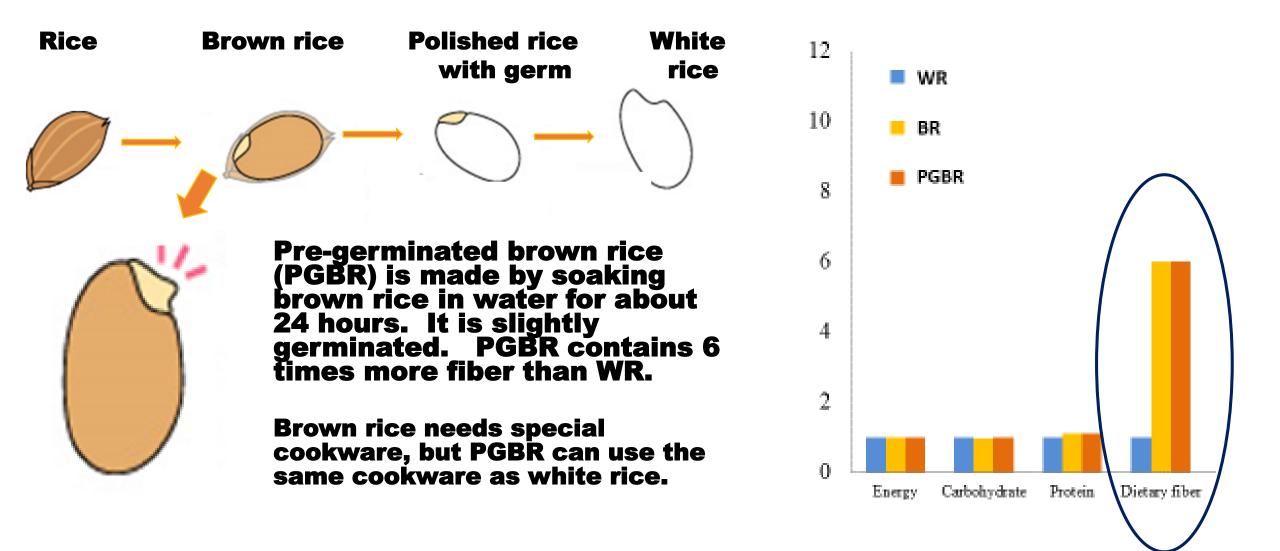
* Significant diffirent at p < 0.05 by Paired student *t*-test

Fiber intake at baseline and final

* Significant diffirent at p < 0.05 by Paired student *t*-test

Blood biochemical data at baseline and final

	Control	group (n=23)	Intervention group (n=24)			
Variables	M	ean ± SD		Ме	ean ± SD	
	Baseline	Final	Р	Baseline	Final	Р
FBG (mmol/l)	8.3±2.1	8.7±2.2	0.58	9.5±3.7	9.3±3.2	0.71
Fructosamine (µmol/l)	339.8±44.8	341.2±43.5	0.84	362.6±86.2	347.1±82.3	0.03*
T-C (mmol/l)	5.4±1.2	5.3±1.4	0.75	5.2±0.9	4.8±0.8	0.02*
TG (mmol/l)	3.4±2.2	3.7±2.8	0.43	3.5±2.2	2.8±2.0	0.02*
LDL-C (mmol/l)	3.2±0.7	3.3±0.9	0.32	2.9±0.8	2.8±0.6	0.70
HDL-C (mmol/l)	1.4±0.3	1.2±0.4	0.01*	1.3±0.3	1.2±0.3	0.07

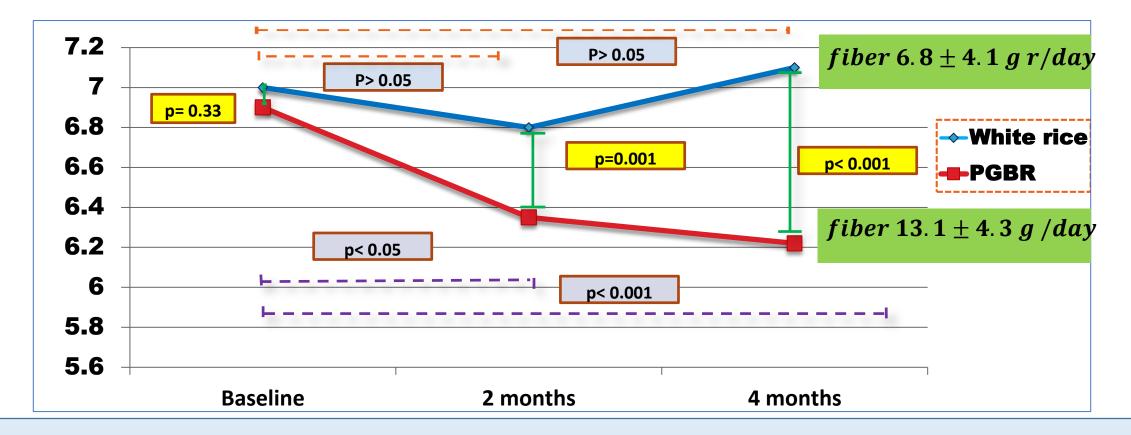

Significant diffirent at p < 0.05 by Paired student *t*-test

Our previous 3 studies: Effects of fiber intake in Vietnamese T2DM

1. Pre-germinated Brown rice 2. Vegetables and fruits 3. Okara

Pre-germinated brown rice (PGBR)

How to make pre-germinated brown rice (PGBR)


The brown rice was soaked in lukewarm water at 30 degrees Celsius for about 20 hours. When it had sprouted about 1 mm, it was dried.

Energy and nutrient intakes

		Baseline		Final		
Variables	PGBR (n=28)	WR (n=27)	p-value	PGBR (n=28)	WR (n=27)	p-value
Energy (kcal)	1485±381	1453±360	0.758	1448±329	1462±256	0.86
Carbohydrates (g)	228±63.7	237±65.5	0.63	237±57.4	231±59.4	0.689
Protein (g)	60.4±15.3	61.2±20	0.87	61±15.4	58.2±11.6	0.44
Lipid (g)	35.9±18.6	29.1±11.6	0.11	28.7±9.2	34±11.1	0.56
Dietary fiber (g)	7.9±4.8	7.9 ±3.2	0.959	10.9±4.6	7.7±3.2	0.05

*Data are mean±SD. P-values obtained by unpaired *t*-test

PGBR reduced HbA1c of DM patients dramatically

As a staple food, WR or PGBR was given for 4 months. A remarkable effect was seen in PGBR group. The main reason seems to be the difference in fiber intake. The fiber intake was 6.8 g in WR group, but 13.1 g in PGBR group.

Pre-germinated brown rice reduced both blood glucose concentration and body weight in Vietnamese women with impaired glucose tolerance. Nhung et al 2014)

Effects of vegetable and fruit intakes on blood glucose concentration

Vegetable consumption was about 230g/day (2020) which **meet only half of recommendation.** Popular vegetable in Vietnam has **low in fiber** < 2g per 100g

Nutritional Support Software: Calorie Smile

The advantage of this software is that patients can receive nutritional guidance without having to come to the hospital.

BỘ Y TẾ VIỆN DINH DƯỮNG ୭୦୦୦୦

BẢNG THÀNH PHẦN THỰC PHẨM VIỆT NAM

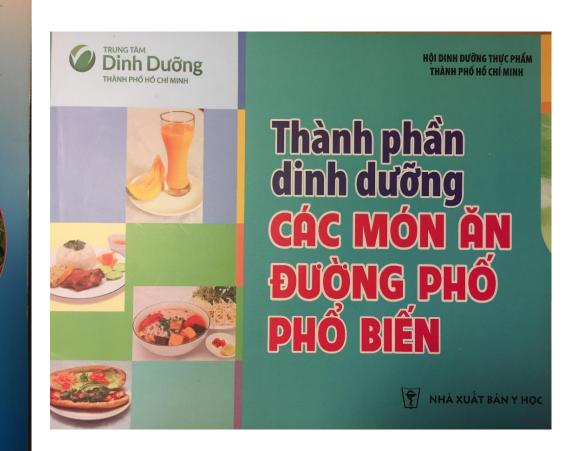
VIETNAMESE FOOD COMPOSITION TABLE

NHÀ XUẤT BẢN Y HỌC

Vietnam Food Composition table

Photos of 500 dishes and nutrients in Hanoi

😚 NHÀ XUẤT BẢN Y HỌC


BỘ Y TẾ VIỆN DINH DƯỮNG

MÓN ÅN

THÔNG DUNG

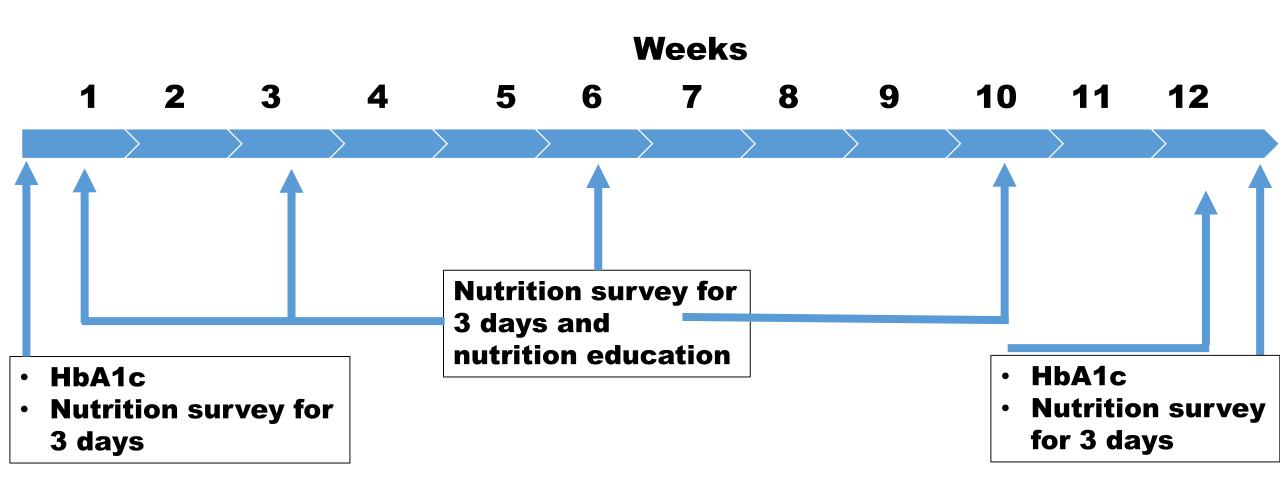
GIÁ TRỊ DINH DƯ**ỡng**

0

Photos of 400 dishes and nutrients in HCM

CSVには、これらのデータが入力されています

Research Note


Validation of Calorie Smile Vietnam Software for Measuring Food Intake

Nguyen Huong Giang^{1*}, Ta Thi Ngoc¹, Nguyen Mai Phuong¹, Ngo Thi Thu Hien¹, Nguyen Thuy Linh², Vu Thi Thu Hien³, Hitoshi Iizuka¹, Fumio Shimura¹, Shigeru Yamamoto¹,

¹Jumonji University Niiza, Saitama Prefecture, Japan ²Hanoi Medical University, Hanoi, Vietnam ³ National Institute of Nutrition, Hanoi, Vietnam

ABSTRACT *Background and purpose.* Achieving accuracy and precision in assessing diet is a challenge. Food weighing (FW) is the "gold standard" method for dietary estimation. However, this method is time-consuming, costly, and disruptive. Traditional methods such as 24h recall, diet record and food frequency questionnaires are mostly used today but these depend largely on the participants' memory. A new Vietnamese version of a nutrition support software called "Calorie Smile Vietnam" (CSV) has been developed and has a food-

Vegetable intervention by education

Baseline characteristics of the population by Study group

	Intervention Group	Control Group
	(n=30)	(n=30)
HbA1c (%)	8.17±0.73	8.05±0.77
Age (years)	57.8±9.0	60.6±8.2
Years with diabetes	6.0±4.3	6.5±5.9
Sex		
Female	20	20
Male	10	10
BMI (kg/m²)		
<18.5	0	0
18.5-24.9	20	20
≥25	10	10

P values obtain from unpaired *t*-test between intervention and control groups

Comparison of vegetable and fruit intake at baseline and final of intervention and control group

	Interventi (n=)	• •	Control (n=:	• -
_	Baseline	Final	Baseline	Final
Vegetable and fruit intakes (g)	234 ± 130	326 ± 173*	161 ± 118	187 ± 132

*Significantly different from baseline to final within the group (p<0.05)

Energy and nutrient intakes at baseline and final

	Intervent (n=	• •	Control group (n=30)		
	Baseline	Final	Baseline	Final	
Energy (kcal)	1399±294	1377±234	1398±315	1378±296	
Protein (g)	66.4±18.3	62.6±16.9	61.5±15.7	58.9±17.1	
Fat (%E)	26.3±6.2	24.9±3.1	24.7±4.3	25.5±3.8	
Carbohydrate (%E)	54.7±8.2	57.1 ± 4.4	57.7 ± 5.5	57.6±4.9	
Fiber (g)	6.4 ± 2.5	8.3±3.0***	5.5 ± 1.8	5.9±2.1	

*** Significantly different from baseline to final within the group (p<0.0001)

Comparison of HbA1c at baseline and final

of intervention and control group

		ion group 28)	Control group (n=30)		
	Baseline	Final	Baseline	Final	
HbA1c (%)	8.16±0.75	7.79±0.8*	8.05±0.77	8.39±1.33	

*Significantly different from baseline to final within the group (p<0.05)

	A群 (発芽玄米群) (n=28)			B群 (白米群) (n=27)			
	Before	After	p-value		Before	After	p-value
Weight (kg)	60.06±8.96	60.18±8.97	0.531		57.82±10.3 8	57.80±10.7	0.964
ВМІ	23.9±2.39	23.9±2.54	0.688		23.2±2.88	23.2±2.94	0.864
Body fat (%)	30.0±6.3	28.5±6.6	<0.001		29.34±6.6	26.98±6.66	<0.001
Glucose (mmol/L)	9.17±1.80	7.96±2.3	0.021		10.0±1.80	9.73±2.83	0.639
HbA1c (%)	6.92 ± 0.36	6.19 ± 0.77	<0.001		7.03 ± 0.46	$\textbf{7.12} \pm \textbf{0.84}$	0.375
TC (mmol/L)	4.96± 0.72	4.75± 0.67	0.122		$\textbf{4.96} \pm \textbf{0.91}$	4.74± 0.71	0.296
TG (mmol/L)	2.38±2.00	1.75±0.64	0.083		2.99±2.85	1.87±0.92	0.029
HDL-C (mmol/L)	1.3±0.135	1.22±0.17	0.071		1.31±0.16	1.17±0.16	0.003
LDL-C (mmol/L) Data	are mean±39.	P-Values obtain	ed by paired	d <i>t</i> -	-12.84±0.87	2.87±0.57	0.798

Okara fiber controlled blood glucose in Vietnamese type 2 Diabetes Mellitus

Okara is a by-product of making tofu. Okara is a byproduct of making tofu. It is mainly the soybean skin and fiber.

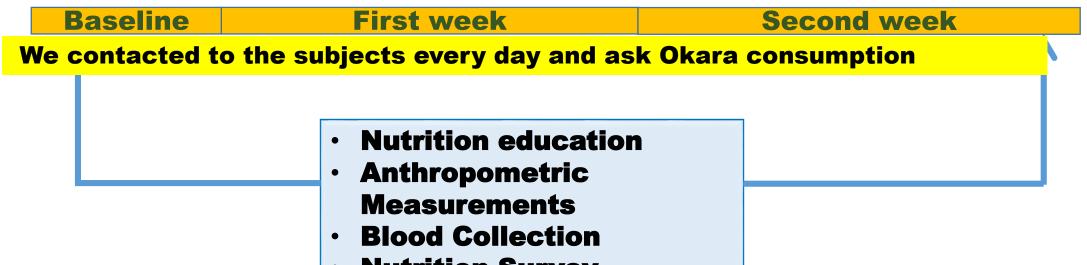
In Japan, it is used as human food, but in Vietnam, it is used as animal feed.

How to get Okara

Home made soybean milk residue

tofu shop by product

New Vietnamese menus with Okara



Methodology

Design: Intervention study

	Control	Okara
n	30	30

2 weeks intervention

We had nutrition education and gave subjects Okara menus

Energy and nutrient intakes

Variables	Co	ntrol group n=30		Okara group n=28		
	Baseline	Final	p-value	Baseline	Final	p-value
Energy (kcal)	1378±366	1453±512	0.56	1084±402	1139±312	0.99
Carbohydrates (g)	191.9±58.9	200.8±71.4	0.71	166.9±51.6	165.1±53.3	0.39
Protein (g)	66.6±42.8	70.6±31.6	0.85	53.9±25.9	59.7±21.4	0.14
Lipid (g)	46.5±24.8	40.3±24.1	0.33	22.3±17.3	26.7±13.8	0.13
Dietary fiber (g)	6.6±3.5	8.0±4.4	0.22	7.5±7.1	13.4±4.4	<0.01
Dietary Okara (g)	0	0		0	54 ±30	

*Data are mean±SD. P-values obtained by unpaired *t*-test

Results of Blood biochemistry

Variables	Со	ntrol Group n=30		Okara Group n=28			
	Baseline	Final	p-value	Baseline	Final	p-value	
G lucose (mmol/L)	6.82 ± 1.61	6.75 ± 1.88	0.638	6.30 ± 1.73	5.39 ± 1.44	<0.05	
Fructosamine (µmol/L)	308 ± 40	317 ± 45	0.178	350± 40	314 ±37	<0.01	
TC (mmol/L)	$\textbf{4.29} \pm \textbf{0.93}$	4.80 ± 1.13	0.032	5.04 ± 1.64	5.01 ± 1.65	0.798	
TG (mmol/L)	$\textbf{1.06} \pm \textbf{0.31}$	$\textbf{1.16} \pm \textbf{0.33}$	0.109	2.13 ± 1.79	2.21 ± 1.75	0.762	
HDL-C (mmol/L)	$\textbf{2.60} \pm \textbf{0.85}$	3.09 ± 1.18	0.035	$\textbf{1.20} \pm \textbf{0.30}$	$\textbf{1.19} \pm \textbf{0.29}$	0.598	
LDL-C (mmol/L)	2.18 ± 1.21	2.40 ± 2.27	0.293	3.33 ± 1.28	3.30 ± 1.47	0.854	

*Data are mean±SD. TC = total cholesterol, TG = triglycerid, HDL-C = high-density lipoprotein cholesterol, LDL-C = low-density lipoprotein cholesterol. P-values obtained by unpaired *t*-test

Ŧ V がとうごせ います。